

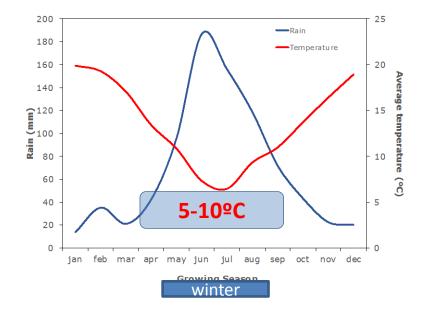
Phenotypic traits expressed for white clover cold tolerant genotypes collected in the Patagonia region of South America

Dr. Luis Inostroza INIA-Chile

INIA Ministerio de Agricultura

Gobierno de Chile

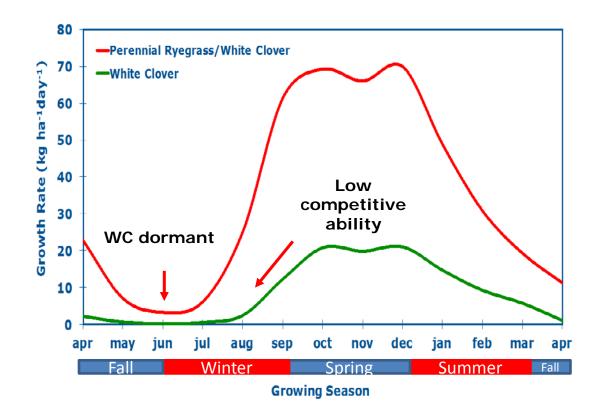
Grazing livestock system in Chile



Perennial ryegrass/white clover

Mediterranean environments

- Cold and rainy winter
- Hot and dry summer



Mixed sward growth rate in Mediterranean environments

The cold season affects the WC contribution to the mixture.

- WC is dormant and PR has a low growth rate.
- WC > PR thermal requirements.

Improving WC cold tolerance: -annual DM production. -extend the grazing period. -conserved forage.

Cold tolerance conceptual model Idiotype for Mediterranean environments

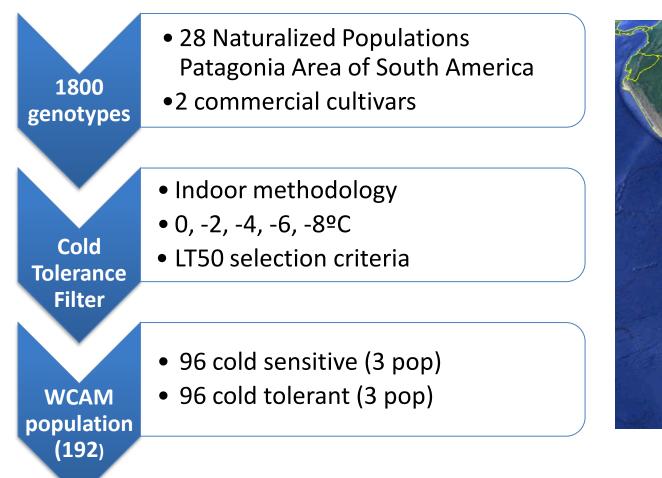
Early vigor during Spring

(growth capacity low T)

- High Photosynthetically active canopy during winter (lower respiration cost)
 - Spectral indices (NDVI, Vog, PRI, among others).
 - High growth rate
 - High petiole length
 - High LA
- High No stolon growing points
- High Nitrogen reserves (VPS-proteins).

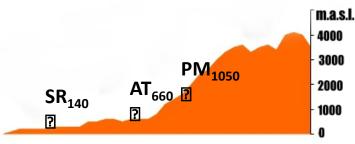
Plant Survival during Winter

(storage capacity)


- Cold acclimation traits (5-10°C)
 - Low GR during fall
 - High stolon DM partitioning
- Stolon CHO metabolism
 - High CHO accumulation
 - Slow CHO degradation
- Stolon thermo stability
- Stolon osmotic potential

Plant Survival + Early vigor

- Low growth rate during cold season.
- High competitive ability with Perennial Ryegrass
- High DM production during spring


White clover association mapping (WCAM) population

Multi-location trial

- 3 Locations with winter cold gradient associated with the altitude.
- Same longitude (36^oS)
- WCAM pop clonally propagated
- Spaced plant (1x1 m)
- Alpha Lattice experimental design (2 rep, 24 IB(rep)).

Plant phenotyping

During three growing season:

- DM production
- Canopy reflectance and temperature
- Spectral images aerial with a UAV-drone
- Leaf traits
 - -Petiole length
 - -Leaf area
 - -SLA (cm²/g)

• Stolon traits during the growing period (2 stol/plan)

- -Length
- Diameter
- -Internode length
- -Stolon elongation rate

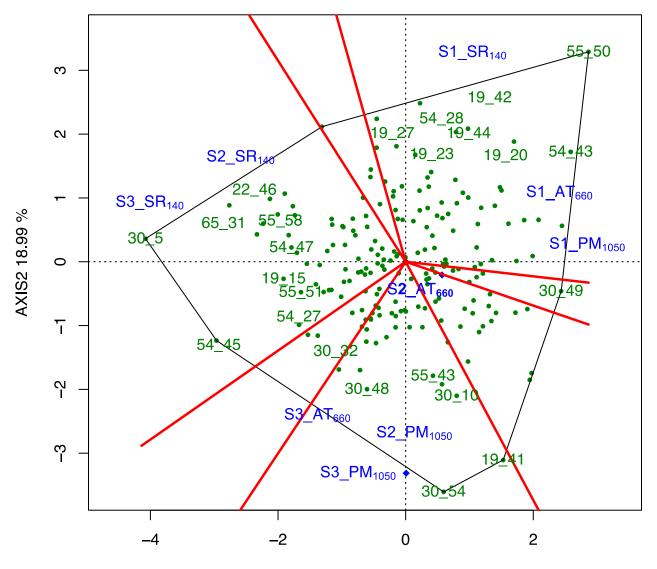
Stolon traits during winter period

- -stolon-WSC were determined in three times: early, middle and late of winter.
- -Stolon osmotic potential (late winter)
- -Stolon membrane thermo-stability (late winter)

Core sample (8 cm diam)

- -Stolon DW
- -Stolon Length
- -Stolon diameter

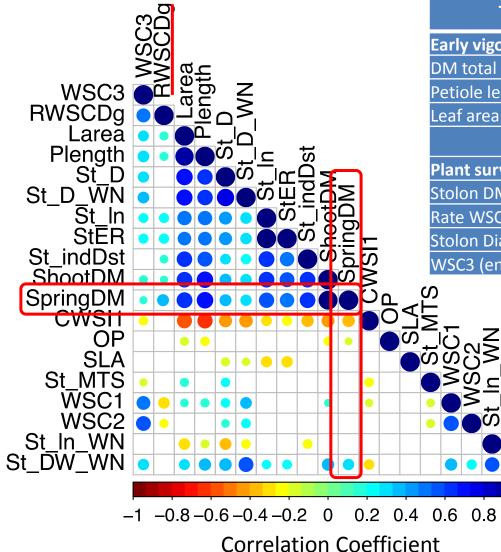
DM production components of variance and H²



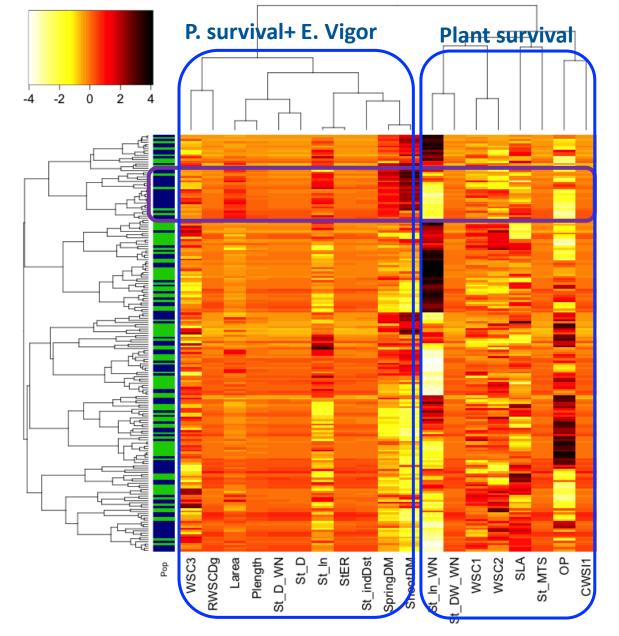
 $Y_{ijklm} = \mu + l_j + a_k + r_l + IB_m + g_i + g \times l_{ij} + g \times a_{ik} + g \times l \times a_{ijk} + \varepsilon_{ijklm}$

DM production	σ² _g	σ² _{g×I}	σ²ε	H ²
Season 1 (2013/14)	397.8±94.4 ***	292.4±99.7 ns	1169.2±86.8	0.49±0.08
Season 2 (2014/15)	3856.9±524.6 ***	476.5±308.1 ns	5968.5±358.9	0.73±0.04
Season 3 (2015/16)	471.6±97.1 ***	0.0±0.0 ns	2442.9±119.6	0.53±0.06

DM production	σ² _g	σ² _{g×I}	σ² _{g×y}	σ² _{g×y×l}	σ²ε	H ²
All seasons	1308±216.3 ***	292.2±139.8 ns	782.8±166.8 ***	1485.8±193.2 ***	5052.1±178.2	0.55 ± 0.05


DM production GGE biplot

AXIS1 24.81 %

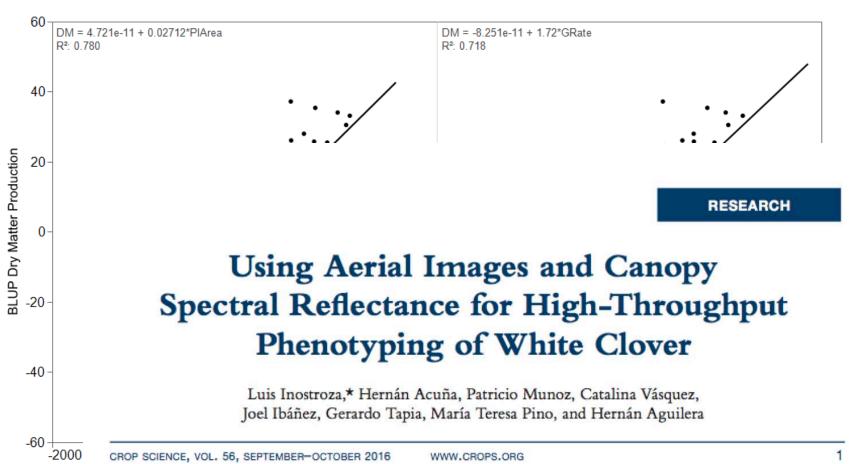


Phenotypic traits and early vigor

Traits	r _g	H ²			
Early vigor traits	Spring DM				
DM total	0.94± 0.02	0.55±0.05			
Petiole length	0.77± 0.04	0.75±0.03			
Leaf area	0.71± 0.05	0.82±0.02			
Plant survival traits					
Stolon DM_winter	0.70± 0.29	0.36±0.08			
Rate WSC Degradation	0.64± 0.22	0.19±0.08			
Stolon Diameter winter	0.47 ± 0.10	0.78±0.03			
WSC3 (end winter)	0.28±0.11	0.52±0.06			

- 1

Tolerant
Sensitive


Phenotypic Traits

Genotypes

Relationship between DM production and some image-aerial estimated traits

Conclusions

- Broad phenotypic variation was observed for cold tolerance and early vigor in the WCAM populations.
- Leaf traits were related to early vigor and stolon traits to storage capacity and plant survival.
- Currently we are identifying the genomic regions (QTLs) controlling the expression of this phenotypic traits in white clover.

Acknowledgments

INIA Chile:

Dr. Luis Inostroza Dr. Gerardo Tapia Dr. Stanley Best Dra. María Teresa Pino Dr. Hernán Aguilera

Research Assistance José Oñate Luis Valdez

University of Concepción-Chile:

-Dr. Hernán Acuña -Catalina Vásquez, M.S. Student -Joel Ibáñez, M.S. Student

University of Florida: Dr. Patricio Munoz Dr. Mehul Bhakta

Funding

FONDECYT Fondo Nacional de Desarrollo Científico y Tecnológico

Research grant N°1130340

